

VI CONGRESSO NAZIONALE III INTERNATIONAL CONGRESS

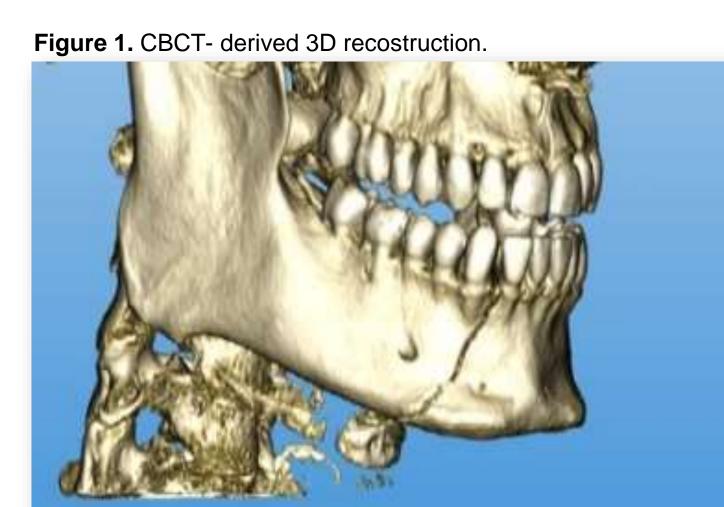
ADVANCED TECHNOLOGIES, AUGMENTED REALITY AND AI IN ORAL SURGERY: WHAT CAN WE DO NOW

Lasaracina Alessia¹, D'Amore Roberto², Barone Barbara¹, Caggiula Alessandra¹, De Falco Domenico¹, Dentico Elena¹, Fortunato Mattia¹, Iaquinta Francesca¹, Macripò Nicol¹, Pedone Doriana¹, Pinto Fabiana¹, Roselli Laura¹, Petruzzi Massimo¹.

- 1. Dental School, University of Bari "Aldo Moro", 70124 Bari, Italy
- 2. Department of Mechanics, Mathematics, and Management, Polytechnic Institute of Bari via Orabona, 4, 70125 Bari, Italy

INTRODUCTION

Modern implant surgery has evolved from a two-dimesional (2D) planning approach, prone to inaccuracies, to a three-dimensional (3D) digital workflow. The latter ensures greater predictability and safety. The integration of Cone Beam Computed Tomography (CBCT), intraoral scanners (IOS), Artificial Intelligence (AI), and Augmented Reality (AR) is establishing a new standard of care. This approach allows for real-time visualization of critical anatomical structures, enabling more precise, minimally invasive surgeries with reduced recovery times for patients.


METHODS

The Integrated Digital Workflow

1. Data Acquisition and Virtual Patient:

CBCT for bone anatomy (DICOM format) and Intraoral Scanner (IOS) for soft tissues and arches (STL format).

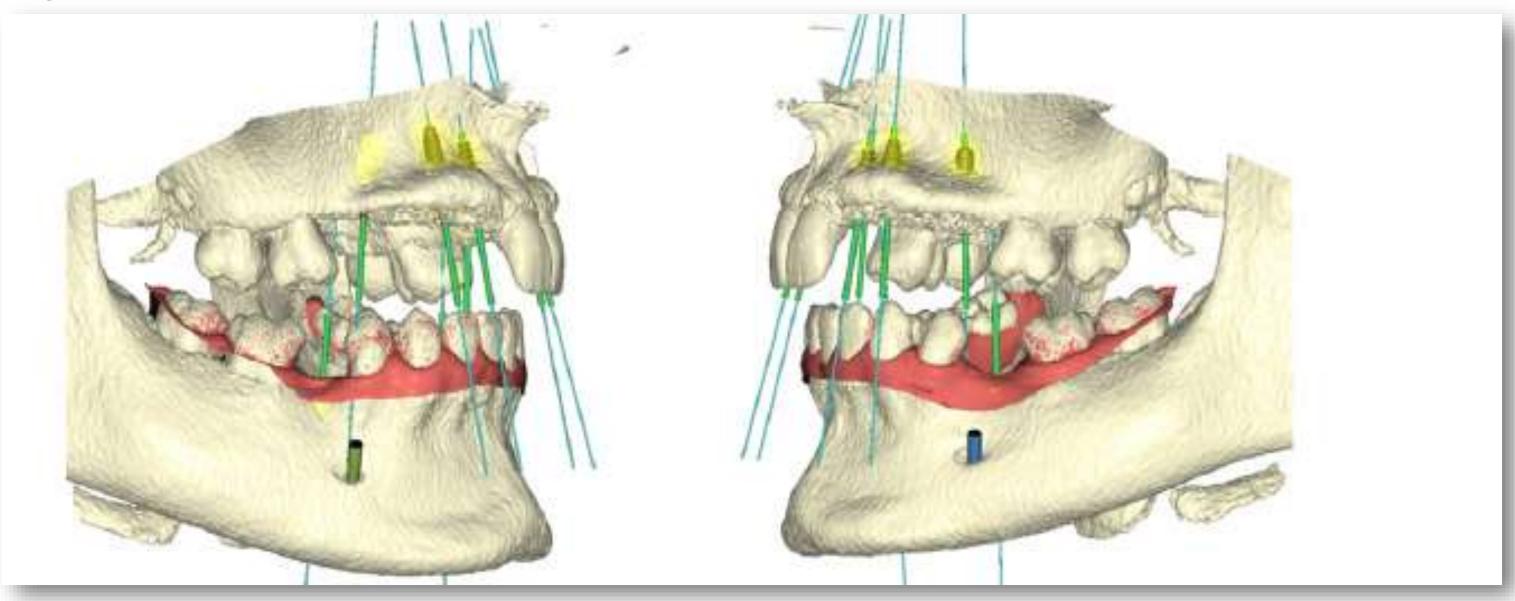
Data fusion to create a complete 3D model of patient.

3. Surgical Navigation with Augmented Reality (AR):

The surgical plan is imported into a head-mounted display (HMD).

AR HMDs fall into two principal categories:

- Optical See-Through (OST): e,g., Microsoft HoloLens;
- Video See-Through (VST): e.g., Visette 45 SXGA VST, Vuzix Wrap 920.



2. Al- Assisted Planning:

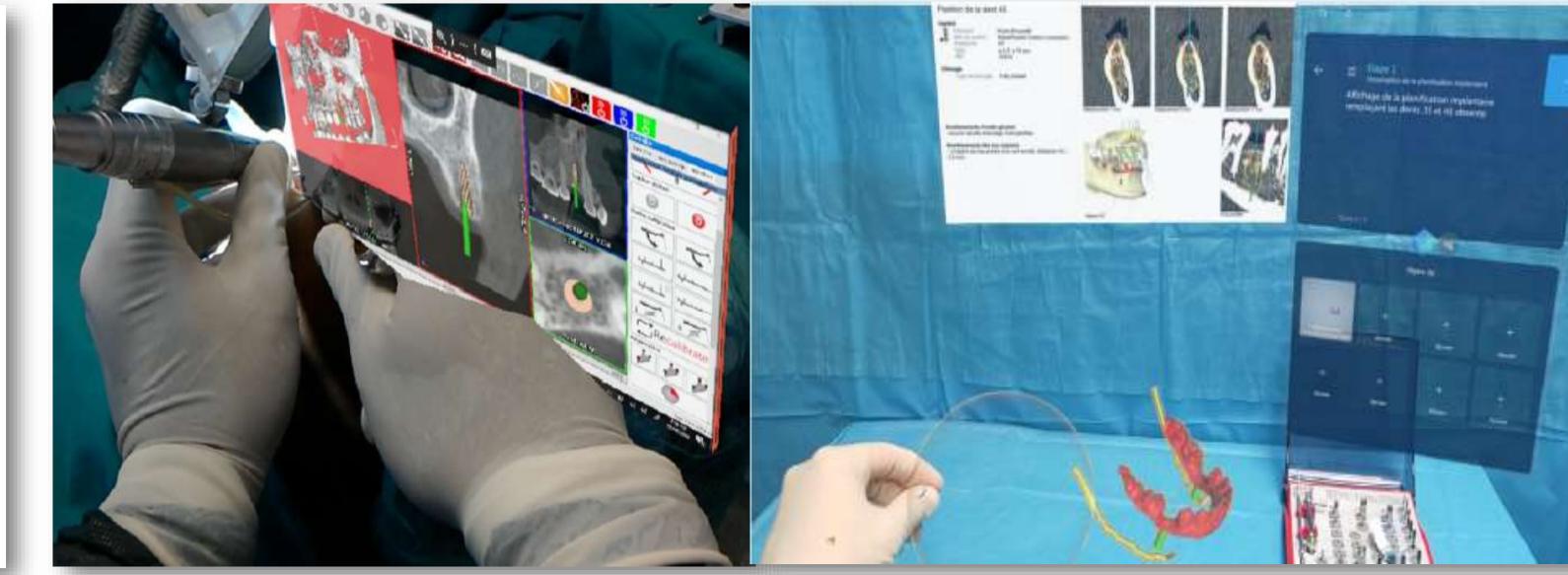
Dedicated software leverages AI for automated segmentation and visualization of critical anatomical structures.

Prosthetically driven virtual implant planning to determine the ideal holographically guided freehand procedure. implant position, angulation, and depth.

Figure.2. DTXStudio Implant simulation of implants.

that require improvement.

Funding: This research received no external funding. **Conflicts of Interest**: The author declares no conflict of interest.


The surgeon visualizes the 3D plan (implant axes, anatomical structures) overlaid in real time onto the operative field and performs a

This way you have a continuous visual guide.

CONCLUSIONS

clinical protocols.

Figure 4. The view of the surgeon during the surgery wearing Hololens glasses and Augmented reality surgical implant procedure checklist.

hardware and the need for further studies to validate and standardize

RESULTS

The integration of 3D imaging, AI, and augmented reality (AR) optimizes High accuracy, with mean apical deviations <1.6 mm **INCREASED ACCURACY** and angular deviations < 5.5°. the entire implant workflow—from diagnosis through the surgical phase. REDUCED OPERATIVE Significant reduction in surgical time compaed with 2D-Evidence shows that this approach achieves more accurate implant TIME guided methods. placement, reduces operative time, and enhances safety, particularly in **ERGONIMICS AND** Improved eye-hand coordination and enhanced safety managing critical anatomical structures. These benefits translate into less via real-time visualization of anatomical structures. **SAFETY** invasive procedures and, consequently, shorter postoperative recovery REDUCED INVASIVENESS Reduced surgical trauma due to more targeted times, significantly improving patient outcomes. AND FASTER RECOVERY procedures, facilitating faster postoperative recovery. Future prospects are oriented towards the use of increasingly accessible

REFERENCES

LIMITATIONS

1. Saini, R. S., Bavabeedu, S. S., Quadri, S. A., Gurumurthy, V., Kanji, M. A., Kuruniyan, M. S., Binduhayyim, R. H., Avetisyan, A. (2024). Impact of 3D imaging techniques and virtual patients on the accuracy of planning and surgical placement of dental implants: A systematic review. Digital Health, 10, 20552076241253550. https://doi.org/10.1177/20552076241253550 (MDPI) 2. Kafedzhieva, A., Vlahova, A., & Chuchulska, B. (2025). Digital technologies in implantology: A narrative review. Journal of Functional Biomaterials, 12(9), 927. https://doi.org/10.3390/jfb12090927 (MDPI)

3.Engelschalk, M., Al Hamad, K. Q., Mangano, R., Smeets, R., & Molnar, T. F. (2025). Dental implant placement with immersive technologies: A preliminary clinical report of augmented and mixed reality applications. The Journal of Prosthetic Dentistry, 133(2), 346–351. https://doi.org/10.1016/j.prosdent.2024.02.017 (PubMed)

4. Bochet, Q., Raoul, G., Lauwers, L., & Nicot, R. (2024). Augmented reality in implantology: Virtual surgical checklist and augmented implant placement. Journal of Stomatology, Oral and Maxillofacial Surgery, 125(5), 101813. https://doi.org/10.1016/j.jormas.2024.101813 (Whitefield Biomed) 5. Jiang, W., Ma, L., Zhang, B., Qu, X., Ning, G., Zhang, X., & Liao, H. (2018). Evaluation of the 3D augmented intraoperative positioning of dental implants in edentulous mandibular models. The International Journal of Oral & Maxillofacial Implants, 33(6), 1219–1227. https://doi.org/10.11607/jomi.6270 (OUCI)

6. Pellegrino, G., Mangano, C., Mangano, R., Ferri, A., Taraschi, V., & Marchetti, C. (2019). Augmented reality for dental implantology: A pilot clinical report of two cases. BMC Oral Health, 19, 158. https://doi.org/10.1186/s12903-019-0853-y (BioMed Central)

High costs, a non-trivial learning curve, tracking

sensitivity to lighting and motion, and HMD ergonomics